相控阵设计的核心

 

相控阵天线阵列本身的设计主要是幅度、相位分布设计和单元阻抗设计。阵列尺寸由波束宽度最窄时的宽度值和副瓣电平决定。相位分布主要根据波束要求而定。由于单元方向图和阻抗的限制,通常平面相控阵最大扫描范围为±60°的圆锥,加上一个球罩透镜后也可得到半球扫描。

若仅要求方向图最大值在空间移动(扫描),只需要形成线性变化的相位分布。这时方向图的最大值方向垂直于等相位面。使用数字式移相器时,除了几个特殊角度以外,一般得不到精确的线性相位分布。这时在方向图的某些方向上会出现寄生副瓣,其大小与具体的相位分布规律有关。为了满足特殊要求,则需要采用方向图综合法,事先算出所需的阵面相位分布。例如,可以将阵面分成若干个区域,把每一区域都看成独立的阵面来设计这个阵的方向图,这样就能在空间得到多个同时存在的波束,也可以利用特殊的相位分布使方向图变宽或形成余割平方形方向图。

为了简化馈电结构,有些相控阵天线是等幅度的。为了克服等幅分布时副瓣电平高的缺点,可采用密度加权,即有源辐射单元在阵面上的分布是不均匀的,其分布密度按一定的规律变化。在有源辐射单元的边上放置不馈电的无源辐射单元,以改善辐射单元的阻抗特性。

相控阵天线辐射单元的数量多,当失效单元数在5%以下时对天线阵性能的影响不大,因而可靠性较高。

雷达中使用相控阵天线后,波束控制灵活性显著提高,故可制成多功能雷达,使一部雷达起几部常规雷达的作用。随着微波集成电路技术的发展和新型移相器的出现,相控阵天线的成本正不断下降,体积越来越小,重量也在进一步减轻。

相控阵在5G技术上的应用

 

MIMO与大规模MIMO

要实现5G的前景,需要在基站的建设方式上做出重大创新。目前,主要依靠多输入多输出(即MIMO)天线配置来成倍增加无线基站天线链路的容量。这些天线能够将信号强度集中到较小的空间区域,通过将信号准确导向所需位置来提高总体效率和吞吐量。通过添加额外的天线,可提高这种波束成形能力。

传统基站可容纳两根到八根天线,而5G基站需要在“大规模MIMO”配置中排列64到数百根天线,以便提供必要的数据速率。这种相控阵天线设计包括一个有源相控阵(AESA),能够以电子方式操纵信号,其精度显著高于MIMO如今可以支持的波束成形精度。

 

高性能、低成本的有源天线

 

就大规模MIMO 5G系统的架构和装配而言,它们与专用于军用和民用空中交通管制和天气系统跟踪应用的新一代多功能相控阵雷达(MPAR)有源天线系统具有很多相近之处。通常我们不会将这类雷达系统与5G等成本敏感型商业应用相关联,MPAR技术利用设计和制造效率极大降低了最终系统的成本。

第一代MPAR系统在由成百上千个有源天线组成的平面配置中采用了可缩微平面阵列(SPAR™)片。 通信半导体MACOM和麻省理工学院林肯实验室合作开发的SPAR片技术凭借高度集成的天线子系统以及大规模商业级封装和制造技术,提供了成本敏感型的全新相控阵雷达系统开发方法。

片式AESA为新一代高性能灵敏型雷达系统奠定了基础,此系统可快速构建、灵活定制和扩展,支持在各种应用中部署,成本比传统缝隙阵列架构低5倍。MPAR等相控阵技术的持续创新有助于充分实现5G技术的前景,助力基站OEM简化设计和制造流程,加快5G技术的上市速度。

评论

<a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong> 

required